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We present a theory of the nature of plasmons in nanowires along with the response of such systems to a
spatially uniform applied electric field in the plane perpendicular to the symmetry axis of the wire. We confine
our analysis to the electrostatic description of these properties and to modes with infinite wavelength parallel
to the wire’s symmetry axis. Our theory thus focuses on the limit where the linear dimensions of the cross
section are small compared to the wavelength of radiation that may illuminate the system. We derive integral
equations that involve only the electrostatic potential on the boundary of the wire for a wire of arbitrary cross
section. Once this is solved, a complete description of the potential may be generated. Companion equations
are obtained for the function that provides one with the lines of electric field in the system. The homogeneous
versions of these equations provide one with a means of finding the plasmon eigenfrequencies and eigenfunc-
tions, whereas the inhomogeneous equations allow one to generate the response of the nanowire to a spatially
uniform applied field. We present numerical studies of the plasmon normal modes and electromagnetic re-
sponse of nanowires of rectangular cross section, and we compare our results to experiments and to a calcu-

lation done by other methods.
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I. INTRODUCTION

Currently, there is great interest in the electromagnetic
response of diverse nanostructures. Metallic systems are of
particular interest because they possess collective modes of
the conduction electrons referred to as plasmon modes.
When an external source such as a laser excites such a mode,
the electric field of the laser may be enhanced greatly in the
near vicinity of the nano-object. Thus, for example, one re-
alizes surface enhanced Raman signals wherein the excita-
tion cross section for diverse molecules can be larger than
realized in the liquid or gas phase by many orders of
magnitude.! It is also the case that very large enhancements
are realized for diverse nonlinear optical interactions through
exploitation of plasmon resonances. The detection of single
molecules by optical means is feasible in the presence of
such enhancement effects.”

Theoretical descriptions of the plasmon modes and elec-
tromagnetic response characteristics of diverse nanosystems
are thus of interest. In the limit where the relevant linear
dimensions of a structure are small compared to the wave-
length of the light with which it is illuminated, simplifica-
tions in the theory are possible. The electric field in the in-
cident light may be regarded as spatially uniform in the near
vicinity of the object, and it is the case as well that the local
electric fields set up by electron motions may be described
within the framework of electrostatic theory. For very simple
structures (a single sphere; a single nanowire of cylindrical
cross section), the description of both the electromagnetic
response and the plasmon normal modes are elementary
within this framework. Through use of special coordinate
systems, one can extend the description to somewhat more
complex structures. Examples are a sphere placed near a
plane®* and two spheres, possibly dissimilar, in near proxim-
ity to each other.>® Through use of multiple scattering theory,
arrays of spheres’ or parallel nanowires of circular cross sec-
tion may be examined.®
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If one wishes to address objects of more complex shape,
even within the simple picture outlined in the previous para-
graph, the theory remains a challenge. Consider, for ex-
ample, a sample in the shape of a rectangular prism or the
limiting case of an infinitely long nanowire of rectangular
cross section. We note that one finds interesting experimental
studies of rectangular nanowires in the literature.®!! For
such samples, one may expand various quantities of interest
inside the material in terms of appropriate Fourier series.
However, there are no convenient sets of basis functions for
use in the region outside the sample. Thus, the classical
method of employing expansions in orthogonal basis func-
tions fails for such a case.

In this class of problems, it is possible to derive eigen-
value equations in the form of integral equations that involve
only the relevant potential on the boundary of the medium.
Once the potential on the boundary for a particular normal
mode is determined, then the extinction theorem of math-
ematical physics allows one to find the potential associated
with a given mode everywhere if desired. Thus, one can
describe the nature of the fields set up by charge motions
both inside and outside the sample. In the context of the
electrostatic theory of plasmons, an elegant approach that
leads to such an integral equation has been described by
Fredkin and Mayergoyz'?> and by Mayergoyz et al.'* (We
would like to direct the reader’s attention to most interesting
theorems and general statements in Ref. 13.) In a different
physical context, the magnetostatic theory of spin waves in
ferromagnetic nanowires, two of us have employed the ex-
tinction theorem to obtain integral equations of similar
form.!*!5> We remark that in the dielectric theory of the re-
sponse of nanostructures to electric fields, the structures de-
veloped in Refs. 14 and 15 allow one to treat gyrotropic
media. The virtue of these methods is that they do not require
the use of basis functions, either inside or outside the struc-
ture of interest. Thus, one can address objects of complex
shape.
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In this paper, within the context of a method such as that
described in the previous paragraph, we address the electro-
static theory of the plasmon normal modes of metallic nano-
wires of arbitrary cross-sectional shape. We also obtain a
description of the response of the wire to a spatially uniform
applied electric field. It is the case that the analysis set forth
by Fredkin et al.'>!3 assumes the dielectric constant of the
material of interest to be purely real. In this special limit, one
finds infinitely long-lived plasmon modes characterized by
real frequencies. Our approach is to begin with the discus-
sion of the response of the system to an external field within
the framework of an analysis that allows the frequency-
dependent dielectric constant to have both a real and imagi-
nary part. Thus, in our treatment, the effects of dissipation
within the sample are taken into account fully within the
electrostatic limit. Then one can turn to the idealized case of
the nature of the plasmon modes in the absence of dissipa-
tion through study of the appropriate limit of the homoge-
neous equation extracted from our discussion of the re-
sponse. We also introduce a function analogous to the stream
function of hydrodynamics. This describes the lines of elec-
tric field associated with the response of the system and sat-
isfies integral equations similar in structure to those satisfied
by the electrostatic potential. Construction of the stream
function allows one to plot the lines of electric field associ-
ated with particular plasmon modes of the structure of inter-
est. We should note that Mayergoyz et al.'® have extended
the approach of Refs. 12 and 13 to describe the time evolu-
tion of individual plasmon modes of nanoparticles excited by
external fields under the circumstance that the dielectric con-
stant of the material is complex. In the discussion we present
below, we focus on the frequency-dependent response of
nanowires exposed to cw radiation, whereas Ref. 16 explores
the response of selected individual modes in the time do-
main. It is our view that most real materials are sufficiently
lossy that the absorption lines with the various modes will
overlap, so discussion of selected modes may be of limited
interest in practice.

In Sec. II, we derive the integral equations that form the
basis for our theory and we also discuss the means we have
used to solve them. In Sec. III we present numerical studies
of the nature of the plasmon modes of nanowires of rectan-
gular cross section along with calculations of their response
to an external electric field. Section IV is devoted to conclud-
ing remarks.

II. THEORY

We consider an infinitely long nanowire fabricated from a
material with a frequency-dependent complex dielectric con-
stant &(w). The wire has a constant cross section that may be
arbitrary in shape for our purposes at present. The xy plane is
perpendicular to the axis of the wire, and in this plane the
boundary of the wire is described by a closed curve C. We
place the system in a spatially uniform electric field that has
frequency w.

The electric field induces charge motions in the material,
and as a consequence there is an electric field everywhere in
space which depends on x and y, but which is independent of
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the coordinate perpendicular to the xy plane. The electric
field may be written as

E(,1) = Ew(ﬁ)exp(— iot) + Ew(ﬁ)*exp(iwt). (1a)

The displacement field is D(5,1)=D (5, w)e"“ +c.c., and
this has the form

D(p.1) = &(p.w)E (. w)exp(— iot) + &(p,w) E,(p) expliwt),
(1b)

where p=xX+yy and we recall that e(p,—w)=e"(p, w). Here
e(p,w)=¢(w) inside the curve C where the nanowire resides
and (g, w)=1 outside C.

Within the electrostatic approximation, we have E(5,7)=
—ﬁ¢(ﬁ,t). We view the function ¢ as a function of z=x
+iy. We introduce a new function ¢(z,t) that everywhere
inside and outside z is related to the electrostatic potential by
the Cauchy-Riemann conditions

IP(z,t) IPz1)  IPz1)  IYz1) 2

ox ay dy B ox
We call (z,1) the conjugate potential (or the stream func-
tion, to use the terminology of hydrodynamics). One can
casily see that inside and outside the nanowire E(,1)=—V
X(p,1)Z. We also have the relation E(p,1)—iE(p,?)
=—00(z,t)/ dz, where Q(z,t)=¢(z,t)+iifz,t) is the complex
potential.

We next explore properties of (z,7). The Cauchy-
Riemann conditions ensure that this function is analytic ev-
erywhere inside and outside C. The lines of constant ¢ are
necessarily perpendicular to the equipotential lines every-
where. Thus, the lines of constant ¢ are thus the lines of
electric field. When we complete our analysis we will obtain
two integral equations, one we can solve for ¢,(z) and one
we can solve for ¢,(z), where ¢(z,1)= ¢, (z)exp(—iwt)+c.c.
and similarly for y(z,1).

Let us suppose we have present an electric field of ampli-
tude E, cos(wr) that makes the angle 6, with the x axis. Such
a field is described by the complex potential Q(z,?)
=—Eyz exp(—ify)cos(wr). Our task is then to obtain the total
potential as the nanowire responds to this external field.

We shall distinguish between the complex potential inside
the nanowire and that outside the nanowire by the notations
Q"(z,1) and Q°“(z,t). As noted above, these two functions
are analytic in the domain in which they are defined. As one
crosses the contour C, the functions display nonanalytic be-
havior. Clearly dg/dn, the normal derivative of ¢, is discon-
tinuous and we will see below that ¢ has a jump discontinu-
ity as we cross C. We use the notations z" and z°* to denote
points inside and outside the nanowire.

Cauchy’s theorem gives us the statements

Qin( 7, l‘)

. 1
Qm(Zm,l‘) - d?’] -
n—z

2mi ) ¢

(3a)

and also
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1 Q"(n,1)
= Y — (3b)
Tl C n—2z

(The sense of circulation around C and C,, is counterclock-
wise.)

If C., is a circle of very large radius R, where we will let
R approach infinity, then we also have

1 Qout ,t 1 Qout ¥
Qout(z00 1) = — _§ dyp—1 (77 ) _§ d (7.1)
2l C C

n— Z i n 7]_Zout ’
(4a)
1 Qout ,t 1 Qout ,t
0=——,3€ L) (7.1) _3g g nt) (77)
2mi ) ¢ n-=z"  2mi); n—2z"
(4b)

In Eq. (4), in the integrals over C, one may replace
Q°%(7,t) by Qo(7,1). The integral is then elementary, so Eq.
(4) becomes

Qout( 7, l)

1 )
Q”’“(Z””t, f)=— _§ dn—nm - EOZe—lGO cos wt,
2mi ) o n-2z

(5a)

1 Qout ,t
0 L 4,20

- 7 — Egze %' cos wr.  (5b)
2mi ) ¢ n-z

in

Now we make a special choice of both z” and z°*. Let 7"
become z =, a point infinitesimally close to the contour C, but
just inside of it. We distort the contour C by including in it a
semicircle of very small radius & centered on z=. After this is
done, we may allow z= to approach a point on the curve C
which we denote by {. Equation (3a) then becomes (this
amounts to the use of Plemelj’s formulas)

Q”‘(g’, l‘) Qm(é« l) + ZL dnw (68.)
i n-{
or Qm(g l) — i dnw . (6b)
i Jpy. n—{¢

Notice that a similar treatment of Eq. (3b) leads also to Eq.
(6b). In Eq. (6), the integrals are around the contour C, but
now they are principal value integrals. We may treat Eq. (5b)
in a similar manner. These do provide the statement

1 Q(}ut ,t
0(51) =- .—35 ay 20
ImJpy.

—2Eqe "% cos wt.
n-<{

(7

t —iwt in,out o
We may write 07 (Z, )= QU (e + QI (Det !, so
we have

. 1 Ql"
0n =t ante? (2)

ITJpy. n- ¢’
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Q()ul )
Q%) = jg dpy—— o7 )—Eoé’_'%- (8b)
im)py. n-{

We next consider the boundary conditions satisfied by the
functions that enter Eq. (8). Of course, the electrostatic po-
tential is continuous across the boundary, so <p+w(§)
=¢2"(¢) while the normal derivative is discontinuous.
We have e(+w)d¢? ({)/dn=0¢%"({)/dn. Now we have
the Cauchy-Riemann conditions stated in Eq. (2) that
apply everywhere. Hence, on the boundary, Q™M) on

=g/ (g) /9t and  I@TC(Q) ] dT=—d " ({)/ dn. Here
d/dt is the tangential derivative. From these relations, we
deduce that e(*w) (9W+ ({)/&T— M (L)) dr, from which it
follows that &(*w) /2 ({)=4" (). We also have continuity
of di. ,/ dn across the boundary.

Through use of the boundary conditions, we may write
Egs. (8a) and (8b) as

QI (0 + i (D) = ,ijﬁ AU RS/ R,
1T Jpy. _ g
¢ () +ie(@) () = - Lff; AU ls(w);p’
TJpv. -
~Eoe™ (9b)

In a similar manner, from Eq. (8), one may obtain analogous
integral equations which link ¢, and ¢/, . Upon noting that

P2 (O=[el, (T, P (D=[¥, (O, and e(-w)=[e(w)],

one may take the complex conjugate of these equations to
find

i €D+w( 7]) - ”7”+w( 77)
(=0
(9¢)

. . 1
o (O = iyl () = .—35 J
TJpy.

iD= el =+ b @y Crl DD
1m)py. (=90

— Egetihr*, (9d)

Upon multiplying Eq. (92) by &(w) and adding it to Eq. (9b),
one has

[1+ e(@)]¢l, (&) +2ie(w) ¢, (&)

[S(w) - l]fﬁ <PTw( 77)

Ege™ %z, (10a)

whereas a similar manipulation with Egs. (9¢) and (9d) gives
us

[1+e(w)]e, () = 2ie(w) ¥),(0)

_[s(af)—l] d L Pl
im (n=-0"

Upon adding Eq. (10b) to Eq. (10a), we obtain the integral
equation we seek:

— Ege'*. (10b)
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in 8((1)) - 1 1 (2 a)( 7])
@),(0) = {—} — jg dnp—
elw)+1[2mi| Jpy n—<{

_ *(P+w(77) _ EO i
5£ . z)] [+ (o] e

(11)
Similar manipulations produce an integral equation satisfied
by ¢/, (&):
v ew-1] 1 A
VeulD) == [ e(w)+1 :| 270 32\,‘ a7 n—1{
L () E, "
- d i
G, 7 | T
(12)

This completes our general analysis. Our next task is to dis-
cuss the means of solving the integral equations just derived.
However, before we do this, we comment on the relationship
between our analysis and that presented in Ref. 13, where the
formalism developed there was applied to the particular case
of nanowires. These authors confined their attention to the
calculation of the plasmon frequencies of various nanostruc-
tures under the assumption that the dielectric function is real.
We may obtain an eigenvalue equation for this purpose from
the homogeneous version of Eq. (11). We wish to rewrite this
in a form which may be compared with the discussion in
Ref. 13. Suppose the contour C is described by the relation
y=f(x). Then if p=x'+iy’ and {=x+iy, dp=dx'+idy'=[1

+if"(x")]dx', where f'=df/dx. Then if, as earlier, p=x%
+yy, one has

dn dy. 2" = 0f &) = —y)]

n-¢ (p=0" p-p'I

(13)

The outward normal to the contour C is A=[1+f"(x)?]""?
X{=Xf"(x)+7} and the element of length along C is di=[1
+f"(x)?]"2dx, so our eigenvalue equation [Eq. (11) with E,
=0] has the form

(xy)__{sw)—lhg =8
s(w)+1|Jpy g —pI Pro
(14)

The statement in Eq. (14) is identical to Eq. (47) of Ref. 13.

We could also derive an eigenvalue equation for the con-
jugate potential ¢ from Eq. (12). It would be identical in
structure to Eq. (14) except the ratio A(w)=[e(w)
—1]/[e(w)+1] is replaced by its negative. Thus, if \(w,)
=\, is an eigenvalue of Eq. (14), it follows that -\, is also
an eigenvalue. This theorem is proved in Ref. 13 and also
follows from the structure we have developed here.

We turn next to the means we use to solve the integral
equations derived above. First, we note that the singularity
that appears at {=7 is most inconvenient from the point of
view of numerical computation. We may eliminate this by
writing

/y/)dl/
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LI @) Lfd e(m) - ()
2miJpy. 7777 ( T2mi) T gy

eud) [ dng

. 15
2mi Jpy n—¢ (15)

42 _1 "Eq. (11) may be rewritten as

~71—£:%’
ing o Le(@) = 1] @ () - (L)
#l0= Hd” -1

jgdn (7’_0 2Re(§e %. (16)

Equation (12) may be transformed similarly. It is possible to
either find the eigenvalues of the homogeneous version of
Eq. (16) or to solve the inhomogeneous version by approxi-
mating the integrals by a discrete set of points on the bound-
ary and then converting the problem to that of diagonalizing
or inverting the appropriate matrix. We have found excellent
convergence may be obtained by an alternate approach,
wherein the contour integrals in Eq. (16) are converted from
integrals over the actual circumference of the nanowire to a
circle in a different complex plane.

This is achieved by introducing a mapping of the region
outside the nanowire onto the exterior of a circle in a differ-
ent complex plane we denote as the y plane. We have y=v
+i¢, where v and ¢ are the radial and angular coordinates in
the y plane. A circle in this plane is described by the state-

Upon noting %m Ipv

ment v=1,. As discussed by DiPerna and Stanton,'” a suit-
able transformation has the form
2AX) = g1+ 2 g, (17)

n=0

The authors of Ref. 16 discuss the means of determining the
set of coefficients {g,} which appear in Eq. (17) for any
choice of nanowire shape. In what follows, we shall assume
these coefficients are known. Then we may convert the inte-
grals in Eq. (16) to integrals over ¢ by writing dzy
=(dn/d¢p)d¢, where

n=0

dn dndy oot . S
S _Z7T7A _ otid _ nvg-ing . 18
AT g o= S g ()

On the circle in the x plane, we may write ¢"(7)
=3,¢0"(1)e"®. If this expansion is inserted into the integrals
in Eq. (16), then one obtains a set of matrix equations with
the form

m(J) — 8((1)) dd)f d¢ e l]¢{2 QD ll¢/
0
— eih,b)]|: dn(¢")/d¢’' _ C.C.:|}

(') - n(¢)

_E d¢e-ff¢ Re[ n()e ). (19)
4
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To carry out the procedure just set forth, one must evaluate a
set of integrals of the form

2 2 - eilqﬁ' _ eildz d (¢r)
i) = d dd' —lj¢|: 1 7
100 Jo ¢fo e n¢') - n(¢) | do'

(20)

along with a set of integrals where # is replaced by its com-
plex conjugate. These integrals may be calculated numeri-
cally through use of fast Fourier transforms.

III. RESULTS AND DISCUSSION

In this section, we describe a series of calculations of the
character of the plasmon normal modes of rectangular nano-
wires and also of their response to a spatially uniform elec-
tric field applied parallel to the long dimension of the cross
section. Before we present these results, we briefly review
general aspects of the structure of the formalism developed
in Sec. IL

First, note that the eigenvalues we determine from the
homogeneous form of the integral equation in Eq. (11) are
the values {\,} of AN(w)=[e(w)—1]/[e(w)+1] for which the
homogeneous equation admits a solution. Furthermore, it is
evident that A, are real. If we consider a model of a material
wherein the dielectric function £(w) is assumed to be real,
then the frequencies w, of the modes are real; the plasmon
modes have infinite lifetime in such a picture. We can also
apply the theory to a material wherein dissipation is present.
This means that when w is real, the dielectric constant
e(w)=¢g(w)+ie,(w) is a complex number. Let us suppose
that the real number g, is an eigenvalue of Eq. (11), where
No=(g,—1)/(g,+1). Then the “frequency” w, of the plas-
mon mode associated with this value of the dielectric con-
stant is complex. It is found from the relation &(w,)=¢,. The
inverse of the imaginary part of the complex frequency w, so
determined serves as a measure of the lifetime of the plas-
mon mode «. To determine such a complex frequency nu-
merically, one must know the dielectric function not just
along the real axis of the complex frequency plane, but in its
upper half as well. In principle, one may use the Kramers-
Kronig relations as a means of analytically continuing the
dielectric function off the real axis into the upper half of the
frequency plane. Such a procedure, while possible in prin-
ciple to implement, will not be simple.

We have also seen that if A, is an eigenvalue, as pointed
out by the authors of Ref. 13, =\, is as well. Thus, if €, is an
eigenvalue, so is 1/¢&,. A pair of modes related in this man-
ner will be referred to as twin modes, to use the language of
Ref. 13. From Eqs. (11) and (12), we can see that (pw(z)|8a
= lllw(z) |1/sa and ’#w(z) |sa: ()Dw(z) |l/sa' That iS’ the eqUiPOten_
tial lines of one member of a twin become the electric field
lines of its partner, and conversely.

We now turn to the results of our numerical studies. We
begin with the plasmon modes of a rectangular nanowire
with an aspect ratio of 2:1. Each mode of such a structure
may be labeled with two quantum numbers (o, d”), each of
which assumes the value +1 or —1. The first number refers to
the parity of the equipotential lines with respect to reflection

PHYSICAL REVIEW B 81, 085422 (2010)

TABLE 1. The eigenvalue spectrum g, for a rectangular nano-
wire with aspect ratio of 2:1. As discussed in the text, the value
g,=—1 is an accumulation point of the eigenvalue spectrum, so we
give only a finite number of eigenvalues in the table below.

—-2.6555 —-0.9850
-2.3164 —-0.9843
-2.2576 -0.9717
—-1.9856 —-0.9693
—-1.6858 —-0.9548
-1.3253 -0.9505
-1.3092 -0.9122
-1.2459 -0.9120
-1.1835 —-0.8937
-1.1189 —-0.8450
—-1.0965 —-0.8026
-1.0962 —-0.7638
-1.0520 —-0.7545
-1.0474 —-0.5932
-1.0316 -0.5036
—-1.0291 —-0.4429
-1.0159 -0.4317
-1.0152 —-0.3766

through the x axis and the second to the parity with respect to
reflection through the y axis. We note that in metals, the real
part of the dielectric constant is negative in the regime where
the plasmon normal modes are found by virtue of the contri-
bution from intraband contributions that provide the contri-
bution —(w,/w)?, with wp the plasma frequency of the con-
duction electrons. Thus, the lowest frequency mode of the
system will have the most negative dielectric constant in the
eigenvalue spectrum, and as we move upward in the se-
quence of g,’s which emerge from the eigenvalue analysis,
the frequencies will increase monotonically. In what follows,
we then arrange the information we present in order of the
eigenvalue &,, with the most negative first.

In Table I we present the eigenvalues that emerge from
our numerical study of the rectangular nanowire with the
aspect ratio of 2:1. The results are arranged in two columns.
The left-hand column gives eigenvalues for which g,<-1
and the right-hand column gives those for which g,>—1. We
find that e,=—1 is an accumulation point of the eigenvalue
spectrum. For physical reasons we shall appreciate shortly, it
is the case that ,=—1 will be an accumulation point of the
eigenvalue spectrum for a nanowire of any cross-sectional
shape within continuum theory. We only give a finite number
of eigenvalues in Table I. Close to the accumulation point it
is difficult to determine the eigenvalues numerically.

We turn next to a discussion of the nature of the various
normal modes whose eigenvalues are summarized in Table I.
We illustrate the four lowest lying modes in Fig. 1; the
modes are ordered in terms of the value of the dielectric
function eigenvalue &,, with the largest negative eigenvalue
first. Figure 1(a) shows both the equipotential lines (dark
blue/light blue) and electric field lines (red/yellow) of the
lowest frequency mode corresponding to e,=-2.6555. It is
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FIG. 1. (Color) The equipotential lines (dark blue/light blue) and lines of electric field (red/yellow) for the four lowest lying plasmon
modes of a rectangular nanowire with aspect ratio of 2:1. The eigenvalues represented are (a) &,=-2.6555, (b) &,=—-2.3164, (c)

£4=-2.2576, and (d) &,=-1.9856.

evident that the electric field lines throughout the slab are
roughly parallel to the surfaces of the slab. In the metal, one
can think of this mode as the mode in which the conduction
electrons are sloshing about nearly parallel to the long di-
mension of the rectangle. In terms of the symmetry classifi-
cation mentioned above, this mode has the quantum numbers
(+1,-1). Clearly this mode will be excited by an electric
field applied parallel to the long surfaces of the slab and
“silent” if the electric field is perpendicular to the long di-
mension.

A most striking feature of Fig. 1(a) is that there are polar-
ization charges located at each corner of the slab. These are
point charges so far as we can see from our calculation,
though we have been unable to obtain precision sufficient to
allow us to determine the nature of the singularity in the
electrostatic potential as one approaches a corner. For this
particular mode the point charges on the two left-hand cor-
ners have the opposite sign as those on the right-hand cor-
ners. It is trivial to see that the polarization charge density
ppolz—ﬁ-ﬁ integrated over all space must be zero, where P
is the electric dipole moment per unit volume. Thus, the
nanowire must always be electrically neutral, in the sense
that p,,, must always integrate to zero. (Notice that these
electrostatic modes have only surface charges.) For all the
modes for which £,<-1, we find a point polarization charge
localized at each corner for each of the normal modes.

In Fig. 1(b), we show the equipotential lines and the
lines of electric field for the next highest mode for which
£,=—2.3164 and in Fig. 1(c) we show the contours for the
mode for which &,=-2.2576. These modes have quantum
numbers (—1,-1) and (=1,+1), respectively. As in Fig. 1(a),
the point polarization charges at the corners stand out as very
strong features.

In Fig. 1(d), we show the fourth mode for which &,
=-1.9856. The quantum numbers of this mode are (+1,+1),
which means that the polarization charges on each of the four
corners are equal in magnitude and sign to each other. As
noted above, the system must be electrically neutral. This is
addressed by the formation of charges in the center of each
side of the rectangle that have sign opposite to that of the
four corner charges.

As the eigenvalues ¢, increase toward —1, more and more
charges are found arrayed around the boundary of the nano-
wire. A measure of this is found in the number of zeros or
nodes in the electrostatic potential as one makes a circuit
around the periphery of the wire. As one moves up in the
sequence of normal modes as €, progresses to —1, four new
zeros are added with each move up the ladder, one on each
edge of the periphery.

We illustrate the nature of the higher modes in Fig. 2,
where we display the equipotential and field contours for two
of the modes. We see clearly that as &, progresses toward —1,
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FIG. 2. (Color) For the rectangular nanowire with a cross sec-
tion of 2:1, we show the equipotential lines (dark blue/light blue)
and electric field lines (red/yellow) for two selected plasmon
modes. The eigenvalues are (a) £,=—1.0965 and (b) £,=—1.0152.

more and more charges are arrayed around the circumfer-
ence.

We have seen above that if €, is an eigenvalue, so is 1/¢g,,.
We thus have an infinite sequence of eigenvalues in the re-
gion -1 <g,<0, and again —1 is an accumulation point now
approached from above. As we have seen if we examine the
set of equipotential lines for the eigenvalue £,<-1, these
become the electric field lines for the eigenvalue 1/g,>-1
and conversely. We illustrate this in Fig. 3(a), where we
show the equipotential and electric field lines for the mode
with £,=-0.9850. This mode is the twin of the mode illus-
trated in Fig. 2(b). Then in Fig. 3(b) we show the mode that
corresponds to the eigenvalue &,=-0.3766, which is the twin
to the mode illustrated in Fig. 1(a).

There are two features of interest in Figs. 3(a) and 3(b).
The first can be seen most clearly in Fig. 3(b). We no longer
have point charges located at each corner of the periphery of
the nanowire. The electric field lines encircle each corner,
whereas now the equipotential lines radiate outward. Close
examination of the potential near the corners shows that we
have two equal and opposite charges that form a point di-
pole, as opposed to a point charge. We find point dipoles
located on the corners for all modes for which —1 <g,<O0.
The second point is illustrated best by comparing Fig. 3(a)
with the twin of this mode in Fig. 2(b). In Fig. 2(b), the
electric field lines are odd under reflection through the x axis,
while in Fig. 3(a) they are even under this reflection. The
converse is true of the equipotential lines.
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FIG. 3. (Color) The equipotential lines (dark blue/light blue) and
the electric field lines (red/yellow) of the plasmon modes corre-
sponding to the eigenvalues (a) &,=—-0.9850 and (b) £,=-0.3766.

We can illustrate some of the points encountered in the
discussion above through discussion of a simple example,
a plane of dielectric material of thickness D. Let its surfaces
be parallel to the xz plane, with the y axis normal to the
surfaces, which are infinite in extent. We may regard this
system as the limit of a nanowire of rectangular cross section
as the aspect ratio approaches infinity. It is, of course, an
elementary matter to find the implicit dispersion relation
of the plasmons in such a film. Let the surfaces of the film
be described by y= £ D/2. Then electrostatic theory admits
standing wave solutions for surface plasmons in which all
quantities are proportional to cos(Qx)exp(—iwét). Inside the
film one has solutions where the electrostatic potential is
odd under reflection through the x axis and thus has a
y dependence given by sinh(Qy). There are even parity so-
lutions in which the potential varies as cosh(Qy). In both
cases, outside the film the potential decays exponentially as
exp(=Qly|) as one moves away from the film. Application of
boundary conditions leads to the implicit dispersion relation
s(a)z)):—coth(QD/ 2) for the even parity modes and &(w))
=—sinh(QD/2) for the odd parity modes. As is the case for
our rectangular nanowire, for the film the modes for which
the electrostatic potential is even under reflection in the x
axis lie in the frequency range for which &(w)<-1 and the
odd parity modes lie in the range where —1 <g&(w) <0. The
even parity mode of wave vector Q is the twin of the odd
parity mode with the same wave vector. The two twins have
opposite parity in regard to reflection of the electrostatic po-
tential through the x axis, as in the examples above for the
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rectangular nanowire. The even parity mode is often referred
to as the acoustic plasmon of the film, since as Q—0,
&(wj)—, and o, goes to zero as Q"% The odd parity
mode can be called the optical plasmon mode, since its fre-
quency remains finite at Q=0. In this limit, the optical plas-
mon mode approaches the bulk plasmon frequency of the
film, where &(w;) —0.

We next turn to our studies of the response of the rectan-
gular nanowire to an external electric field applied parallel to
the long dimension of the cross section. If we consider such
a nanowire illuminated by laser radiation, these calculations
describe the response of the wire to an appropriately polar-
ized laser beam, in the limit that the linear dimensions of the
nanowire are small compared to the wavelength of light.

We begin by presenting studies of Au nanowires of rect-
angular cross section with aspect ratios chosen to match
those studied experimentally in Ref. 11. Thus, we use width
to height ratios of 2.56, 4.28, and 7.35, respectively, and in
the calculations below it is assumed the nanowires are ex-
posed to an electric field polarized parallel to the long side of
the wire. In the calculations presented below, we have used
the dielectric constants for Au tabulated by Johnson and
Christy.'8

In Fig. 4(a), we show calculations of the absorption spec-
tra of free standing Au nanowires with the aspect ratios just
mentioned. These results have been generated by integrating

we,(w)|E(F, w)[* over the volume of the wire. We see that as
the aspect ratio increases, the absorption peak moves to
longer wavelengths. We may compare these spectra with fi-
nite difference time (FDTD) calculations of the scattering
spectra reported in Fig. 5(c) of Ref. 10. Of course, the peak
position in the scattering spectra may not coincide exactly
with those in the absorption spectrum, but they should be
close. The peak positions in our Fig. 4(a) show trends that
compare favorably with those in Ref. 10. For aspect ratios of
3, 5, and 7 these authors find peaks at approximately 520,
580, and 610 nm. We have calculated absorption spectra for
these values of the aspect ratio to find peaks at 517, 531, and
570 nm. Both calculations produce very broad spectra, and
as the aspect ratio increases we see a substantial shift of the
peak to the red. Note that our absorption peaks are shifted to
the blue a few percent compared to their calculations of the
scattering spectra.

In Fig. 7 of Ref. 9, we see experimental studies of extinc-
tion spectra of Au nanowires. Two of the samples have as-
pect ratios of 2.57 and 4.42, very close to the values used in
our Fig. 4(a). The peaks in the extinction spectra are at 540
and 600 nm shifted to the red somewhat from our calculated
absorption spectra. It should be remarked that the spectra
reported in Ref. 9 are taken from gratings formed from nano-
wires, but the grating spacing is sufficiently large interwire
interaction effects should be modest. One may inquire, as the
authors of Ref. 10 discuss, if the redshifts may have their
origin in the fact that the nanowires reside on a dielectric
substrate. It would be a major challenge to extend our nu-
merical studies to a nanowire which sits on a dielectric sub-
strate. However, we can obtain an upper limit on the
substrate-induced shift by fully embedding the nanowires in
a dielectric medium. The shifts in the calculated absorption
spectra for such a case will be larger than those realized for
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FIG. 4. (Color) We show absorption spectra calculated for Au
nanowires of rectangular cross section and with aspect ratios of
2.56 (blue curve), 4.28 (red curve), and 7.35 (green curve). In (a),
the nanowire is in vacuum and in (b) it is embedded in a dielectric
with dielectric constant of 2.25.

a sample sitting on a substrate with vacuum above. In Fig.
4(b) we show such calculations and one sees that the red-
shifts induced by the surrounding dielectric are larger than
the discrepancy between the peak positions in Fig. 4(a) and
the data of Ref. 9. Thus, it is plausible to attribute the differ-
ence between theory and experiment to the influence of the
substrate.

While our calculated absorption spectra have peak posi-
tions that compare acceptably with the measured extinction
spectra reported in Ref. 9, light scattering studies of similar
nanowires reported in both Refs. 10 and 11 show peaks
shifted very far to the red compared to the theory presented
here and also with the theory presented in Ref. 10. The au-
thors of Ref. 10 suggested that the presence of the substrate
might produce such a shift, but we see from our calculations
in Fig. 4(b) that the substrate-induced shift is not sufficiently
large to explain the discrepancy. The origin of the difference
between the two theoretical calculations and the data on
these two sets of samples is unclear, unfortunately.

An interesting question is the nature of the enhanced
fields that can be realized by exciting the plasmon reso-
nances of the nanowire, along with their spatial distribution
around the periphery of the wire. We illustrate this in Fig. 5,
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FIG. 5. (Color) The ratio of the square of the electric field just
outside a rectangular nanowire to the incident field as a function of
position along the outer surface of a rectangular Au nanowire. The
aspect ratio is 2:1 and the frequency has been chosen to be at the
maximum of the absorption curve. The exciting field is parallel to
the long side of the profile of the wire.

where for a nanowire with an aspect ratio of 2, we show the
spatial variation of the square of the electric field just outside
the wire as a function of position on its surface. The calcu-
lations are performed for a frequency at the peak of the ab-
sorption curve for this sample. The striking feature of this
curve is that the “hot spots” are very clearly very close to the
edges of the structure. In our earlier discussion, we saw that
right at the corners of the rectangle, we had localized point
charges when the plasmons in this frequency regime are ex-
cited. The enhanced fields displayed in Fig. 5 are modest in
strength largely because Au is a rather lossy material, unfor-
tunately, so the field enhancements one can realize in this
material are modest.

There is an interesting message contained in Fig. 5. The
hot spots in the nanowire are clearly localized very near the
corners. In an actual sample the corners will be rounded to a
considerable degree and clearly the field enhancement will
be less than expected for the perfectly sharp corners in the
ideal profile used to generate Fig. 5. Thus, if one wishes to
employ rectangular nanowires in arrays that will be em-
ployed to generate enhanced nonlinear optical signals, con-
siderable effort should be devoted to the synthesis of samples
with very clean sharp edges. Similar considerations should
apply to other nanoscale structures.

The absorption spectra in Fig. 4(a) are dominated by the
single lowest frequency mode of the nanowire. This is the
mode whose eigenvector is illustrated in Fig. 1(a). On the
short wavelength side, in Fig. 4(b) we can see additional
structures. It is the case, in fact, that quite a number of modes
with frequency higher than the fundamental mode are dipole
active and they also have substantial oscillator strengths. We
illustrate this in Fig. 6(a). What we have done here is to
calculate an absorption spectrum for a Au wire with an as-
pect ratio of 2. We have artificially reduced the imaginary
part of the dielectric constant to a small value. In Fig. 6(b),
we plot the absorption spectrum as a function of the real part
of the dielectric constant, so for any desired material the
frequencies of the various features may be deduced if one
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FIG. 6. (Color) (a) The absorption spectrum of a fictitious Au

nanowire whose dielectric constant has a small imaginary part. The

aspect ratio is 2 and the exciting electric field is parallel to the long

side of the cross-sectional area. In this figure the spectrum is plotted

as a function of wavelength. See the text for a discussion of the

region just above 400 nm. (b) The same as (a), but now the spec-

trum is plotted as a function of the real part of the dielectric
constant.

had data on the frequency variation of the real part of the
dielectric constant.

While the strongest feature in Fig. 6(a) remains the low
frequency mode associated with £=-2.655 (the peak at 515
nm) we see rather intense higher frequency modes. For Au
and for the other noble metals, the imaginary part of the
dielectric constant is large in this wavelength regime, so
these modes do not show as clear features in the absorption
spectrum. If one could synthesize conducting nanowires fab-
ricated from low loss conducting materials, it may be pos-
sible to realize plasmon enhancement effects at high frequen-
cies.

We wish to comment on the two features in Fig. 6(a) near
the wavelength region of 410 nm. We see a doublet here.
This doublet in fact has its origin in the same mode, which
appears at two different wavelengths in the spectrum. In this
spectral regime, the data we have used!” produce a small
broad maximum in the real part of the dielectric constant, so
£(w) is not monotonic in this region. Thus, there are two
values of the frequency (or wavelength) for which &,(w) as-
sumes a value appropriate to one of the dipole active modes.
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Since the maximum in the &;(w) is a very modest feature, it
is not clear to us if this is real or if it is a consequence of very
modest errors in the data. It is thus useful to plot the absorp-
tion spectrum, calculated with small imaginary part, as a
function of &, itself. We show this in Fig. 6(b). The doublet
just above 400 nm in Fig. 6(a) has its origin in the mode near
£,=—1.7 in Fig. 6(b). If one has Au in mind, the spectrum in
Fig. 6(b) covers the spectral range from roughly 500 nm up
to about 235 nm.

IV. CONCLUDING REMARKS

We have presented a formalism that allows the study of
the plasmon normal modes (frequencies and eigenvectors) of
nanowires of arbitrary cross-sectional shape. We have used
this to examine the nature of the plasmon modes of rectan-
gular nanowires of various aspects along with their response
to laser fields. The formalism addresses the electrostatic limit
and also assumes the applied external field is spatially uni-
form. Thus, our attention is directed toward structures whose
size is small compared to the wavelength of the radiation
which illuminates the wire.

The peaks in our calculated absorption spectra agree with
those in the scattering spectra calculated in Ref. 10 by nu-
merical methods. Our results also compare well with the data
reported in Ref. 9 save for a relatively small shift to the red
compatible to a possible shift whose origin is in the presence
of the dielectric substrate. However, while the experimental
spectra reported in Refs. 9 and 11 show a shift in the broad
peak to the red with increasing aspect ratio similar to what
we calculate, our calculated spectra are blueshifted compared
to the data.

We show that enhanced fields realized in the idealized Au
nanowires we study, where the corners of the cross section
are perfectly sharp, are highly localized around these corners.
For Au, a rather lossy material, even at the corners the en-
hanced fields realized are modest. The corners are thus the
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hot spots and care should be taken to make sharp corners in
sample preparation.

It is also the case, as we see from Fig. 6, that the rectan-
gular Au nanowire possesses dipole active plasmon modes
that extend to high frequencies beyond the visible. Such
modes will be present in diverse nanostructures, clearly.
However, the imaginary part of the dielectric constant of the
noble metals used widely in experimental studies is large in
this spectral region, with the consequence that the modes are
very highly damped. It would be of great interest to find a
material wherein the absorption is small even in limited fre-
quency regimes in the visible and beyond. One could then
design structures whose plasmon modes lie within such fre-
quency bands and realize strong plasmon enhanced response
at high frequency. Aluminum is a material where throughout
the visible and into the ultraviolet the imaginary part of the
dielectric constant is quite small. However, the bulk plasma
frequency of aluminum is very high (~15 eV; its surface
plasmon where e=—1 lies at 10.6 eV) so the plasmon modes
of aluminum nano-objects will lie very far out in the ultra-
violet. Also oxidation will be a problem, though it should be
noted that the presence of an oxide layer shifts the surface
plasmon down in frequency to the 7 eV range.'® It is possible
that suitably oxidized aluminum nanostructures could have
well defined plasmon resonances in the near ultraviolet. In
our view, it would be interesting to see studies of such struc-
tures.
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